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Abstract. The influence of bulk superconducting substrates and coatings on the domain
structure parameters of a ferromagnetic ultra-thin film was analysed, assuming the validity of
the London equation in the superconducting volumes. The problem was analysed for both easy
plane and perpendicular easy axis films; however, as the effects of the superconducting substrate
are relatively unimportant for films magnetized in plane, most of the article is devoted to easy
axis films. Expressions for the demagnetization energy were found for arbitrary magnetization
distribution. It was shown that a superconducting substrate changes the domain structure
properties even if the layer is coated with a non-superconducting material. For sufficiently thin
films the domain structure can be fully suppressed, which was shown by considering an isolated
Bloch wall for larger anisotropy (Q > 1) and the critical domain structure for low anisotropy
(Q < 1). The results of numerical calculations for critical ferromagnetic film thickness (as a
function of anisotropy and London penetration depth) are presented.

1. Introduction

Ultra-thin ferromagnetic films and multilayers have been attracting much interest recently,
for both showing novel physical properties and giving new possibilities in applications [1].
This interest is also related to domain structures observed in these materials. The
fast development of technology allows us to expect that new materials of this type
will be available soon, including layers deposited on bulk superconducting substrates.
Such combinations have already been investigated in a few publications, but only for
superconducting surroundings on both sides. Reference [2] presents calculations of the
critical domain structure, in the vicinity of the phase transition induced by an external in-
plane field, showing that in sufficiently thin films there is a transition to a canted phase,
rather than to a domain structure. There is a suggestion, supported by numerical comparison
of the free energy in the monodomain state and domain structure, that the monodomain state
can represent the minimum of energy even for a low in-plane field. The aim of the present
work is to deal systematically with domain structure parameters in the absence of an in-
plane field. Some analysis of this problem has been already performed in [3], but we are
not able to confirm its conclusions in the appropriate limits.

As was shown in [4], the equilibrium domain structure of the infinite ultra-thin plate
has the form of stripes, with finite size for any finite thickness. This size tends to
infinity as the film thickness decreases to zero. Such an effect is related to the asymptotic
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behaviour of the dipolar energy at small thickness. However, in the case of superconducting
substrates the demagnetizing fields are created not only by the ferromagnet itself, but also
by superconducting currents. For an ideal superconductor (characterized by a zero field
penetration depth) the last contribution is equivalent to the mirror image of the ferromagnet.
In the case of perpendicular magnetic moment, its image has the opposite direction (figure 1).

Figure 1. Magnetic moment inside the ferromagnetic film and its images inside ideal
superconducting surroundings for easy plane (a, b) and easy axis (c, d). (a) and (c) correspond
to the symmetric case, and (b) and (d) correspond to vacuum capping. The film is infinite in
both thex andy directions.

In the case of in-plane anisotropy the image has the same direction as the original
magnetic moment, so the superconducting substrate and normal capping combination
doubles the effective thickness of the film (figure 1(b)). This corresponds to double
demagnetizing energy, which can change an equilibrium domain size. At the same time the
superconducting substrate–capping combination produces field distribution similar to that of
the bulk material (figure 1(a)). However, in both cases the demagnetizing field is created
mostly by the free poles on the film edges and the domain size is strongly dependent on
the film in-plane size.

For perpendicular easy axis film the image has the opposite direction to the original
moment (figure 1(c, d)). Hence, far away from its location, the field loses the
dipolar characteristic and decrease much faster. It is clear that such behaviour of the
demagnetization field can lead to new effects.
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2. Basic equations

We will consider an infinite ferromagnetic film of thickness 2t bounded by planesz = ±t .
We start from the most general problem, assuming that half-spacesz > t and z < −t

(figure 1) are filled with different superconducting materials, characterized by the penetration
depthsλ+ andλ− respectively.

2.1. A ferromagnet|z| < t

We assume that the field inside the ferromagnetHF is described by Maxwell equations in
the magnetostatic limit:{ ∇ × HF = 0

∇(HF + 4πM ) = 0
(1)

which is equivalent to HF = ∇8

∇28 = −4π div M
(2)

whereM is the local magnetization vector and8 represents the scalar potential.
In the very thin film (or at relatively large perpendicular anisotropy) the magnetization

distribution along thez-axis can be treated as uniform inside the ferromagnet and the Fourier
components of the potential8 with respect to the sample plane can be found in the form

8k(z) = Ak coshkz + Bk sinhkz + (4π/k2)

×[i(1 − e−kt coshkz)(k · Mk) − kMz
k e−kt sinhkz]. (3)

The related field components are given by H
‖
k(z) = ik8k(z)

Hz
k (z) = 8′

k(z).
(4)

2.2. A superconductor|z| > t

The first of the equations (1) is replaced by the London equation: Hs + λ2
±∇ × (∇ × Hs) = 0

∇ · Hs = 0.
(5)

We neglect any vortex structure as is especially well justified for ultra-thin films, as their
stray fields are very small. The solution of the equations (5) in terms of in-plane Fourier
components can be expressed as

H±
k (z) =

(
ikm

k2

k±
ez

)
8±

k expk+[(tmz)] (6)

wherek2
± = k2 + λ−2

± andez is the unit vector along thez-axis.
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2.3. Boundary conditions

We will apply standard boundary conditions H
‖
k(±t) = H

‖±
k (±t)

H z
k(±t) + 4πMz

k = Hz±
k (±t).

(7)

We will look for the solution, taking the scalar potential in the form

8±
k = Ak coshkt ± Bk sinhkt + (2π/k2)(1 − e−2kt )(ik · MkmkMz

k). (8)

Then the potential amplitudes are equal:

Ak = 4π(1 − e−2kt ) e−kt

k2[(1 + κ+)(1 + κ−) − (1 − κ+)(1 − κ−) e−4kt ]

×{ik · Mk[1 − κ+κ− + (1 − κ+)(1 − κ−) e−2kt ] + kMz
k(κ+ − κ−)} (9a)

Bk = 4π(1 − e−2kt ) e−kt

k2[(1 + κ+)(1 + κ−) − (1 − κ+)(1 − κ−) e−4kt ]

×{ik · Mk(κ+ − κ−) + kMz
k[1 − κ+κ− − (1 − κ+)(1 − κ−) e−2kt ]} (9b)

where

κ± = k/k± = k/

√
k2 + λ−2

± . (10)

There are two particular cases, which are of special interest.

2.3.1. The symmetric configuration (λ+ = λ−). In this caseAk and Bk simplify to the
forms given below:

Ak = {4π(1 − κ+)(1 − e−2kt )e−kt /k2[1 + κ+ − (1 − κ+)e−2kt ]}ik · Mk (11a)

Bk = {4π(1 − κ+)(1 − e−2kt )e−kt /k[1 + κ+ + (1 − κ+)e−2kt ]}M2
k . (11b)

2.3.2. Non-superconducting cover (λ− = ∞). In this limit Ak andBk are given by

Ak = Bk = [2π(1 − κ+)(1 − e−2kt )e−kt /k2(1 + κ+)](ik · Mk − kMz
k). (12)

2.4. Demagnetization energy

The demagnetization energyEd for the whole system (i.e. ferromagnet and superconductor)
can be evaluated by direct integration over the whole space:

Ed = 1

8π

∫
V

H2 dr = 2tSwd = 2tS
∑

k

wk (13)

whereS is the ferromagnetic film area,wd is the effective average volume energy density,
andwk denotes the contribution related to the particulark vector.

For the analysis of static properties of domain structures in thin films we may neglect
terms proportional tok · Mk. Then the last formula can be written in the simpler form

wk = 2π |Mz
k|2[1 − f (kt, λ+/t, λ−/t)] = 2π |Mz

k|2 + w̃k. (14)

We see that the first term in the above expression can be included in the energy of the
uniaxial anisotropy. This term is independent of superconductor parameters and remains the
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characteristic feature of any ultra-thin film [5]. The effective anisotropy constant is given
by

K̃u = Ku − 4πM2
0 . (15)

Then w̃k plays the role of the effective demagnetization energy, related to the non-
uniformity of magnetization distribution.

In order to simplify notation, we will use new variablesν = kt and 3 = λ+/t . The
parametersκ± have been defined already (10). For the particular cases mentioned above,
the f function has the following forms.

2.4.1. The symmetric configuration (λ+ = λ− = 3t).

f (ν, 3, 3) = {1 − [1/(2ν) − κ+] sinh(2ν)

+[1 − κ+/(2ν)](1 + κ2
+) sinh2 ν}/(coshν + κ+ sinhν)2 (16)

where, according to (10),κ+ = k/k+ = [1 + (3ν)−2]−1/2.
For an ideal superconductor (λ+ → 0) we obtain

f (ν, 0, 0) = 1 − (tanhν)/ν. (17)

2.4.2. Non-superconducting cover (λ− − ∞).

f (ν, 3,∞) = 1 − 1 − e−4ν

4ν
− κ2

+ − κ+ + 2

κ+ + 1

(1 − e−2ν)2

4ν
. (18)

Now, in the limit of ideal superconducting substrate (λ+ → 0) we obtain

f (ν, 0, ∞) = 1 − [1 = e−4ν + 2(1 − e−2ν)2]/4ν. (19)

In the limit of λ+ → ∞ this corresponds to the situation of non-superconducting
substrate and capping, leading to the well known formula (see e.g. [4])

f (ν, ∞, ∞) = 1 − (1 − e−2ν)/2ν. (20)

3. Stripe domain structure

Let us consider a simple, one-dimensional model of domain structure, composed of
uniformly magnetized stripes of widthL. The magnetization is aligned alternately in the
±z-directions, and sharp domain boundaries are parallel to theyz-plane. Such a model
is well justified at relatively high anisotropy (i.e. large quality factor). It was investigated
previously in [4] for an ultra-thin film deposited on normal substrate.

The distribution of the magnetization vector can be expressed as

M = M0

(
0, 0,

∞∑
n=1
odd

4 sin(knx)

πn

)
kn = πn

L
. (21)

This corresponds to

Mz
k = M0δ(ky)

∞∑
n=1
odd

2i

πn
[δ(kx + kn) − δ(kx − kn)] (22)

where

δ(k) =
{

1 for k = 0

0 for k 6= 0.
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The averaged energy, per unit volume of the film, arising from domain walls is given
by

ww = σ0/L (23)

whereσ0 = 4
√

AK̃u is the surface energy of the wall. HereA denotes the stiffness constant.
The equilibrium domain size can be found by minimization of the sumwd +ww, which

is equivalent to

lh

L
−

∞∑
n=1
odd

(
2

πn

)
f

(
πn

t

L
, 3+, 3−

)
= min (24)

wherelh = σ0/4πM2
0 is the characteristic length.

In general, this sum must be analysed numerically. The curvesL(t) corresponding to
different penetration depths are shown in figure 2. For thick films (t � L), the domain size
in the free film is larger than in films deposited on a superconductor. In this case, the field
of the superconducting currents adds to the self-demagnetizing field inside the ferromagnet,
increasing the near-zone dipolar energy. On the other hand, for thin films (t � L) the
domain size in the free film becomes smaller than in the case of a superconducting substrate.
This can be understood taking into account the change of the far-zone demagnetizing field
characteristic (see figure 1). The increase is much faster for smaller penetration depth. Since
the multipolar terms decrease with distance much faster than the dipolar one, a critical
thickness exists, where the monodomain state becomes the most efficient energetically
(L → ∞). This argument remains in agreement with results obtained in [3], where the
authors, using a very approximation of the demagnetizing energy, showed that the second-
order phase transition induced by an in-plane field can produce a uniform canted phase (i.e.
L = ∞) rather than domain structure. There was also a suggestion, supported by numerical
calculations, that the monodomain state has the minimal energy even in a zero in-plane
field. We will deal with this problem in the next sections.

On the other hand, the problem is easily solveable at large thickness for ideal
superconductors. Let us note, again, that we assume large uniaxial anisotropy. Forλ± → ∞
we haveκ± → 1, which gives the sum analysed in [4]. In the case of a thick film (t � L)
we can additionally putkt � 1 and obtain the well known formula for equilibrium domain
size [6]:  f (ν, ∞, ∞) ≈ 1 − 1/2ν

L∞ = 2π
√

πlht/7ζ(3)
(25)

whereζ(3) is the Riemann zeta function.

3.1. The symmetric configuration (λ+ = λ−)

For λ+ → 0 we haveκ+ → 0 and in the thick-film limit the effective demagnetization
energy is changed by a factor of two at most. This leads to the result f (ν, 0, 0) ≈ 1 − 1/ν

Ls(λ+ = 0) = L∞/
√

2.
(26)

Let us note that the factor by which the domain size changes is not directly dependent
on L∞.
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Figure 2. Equilibrium domain sizeL(t) dependences, corresponding to different penetration
depths, for (A) the symmetric case and (B) vacuum capping. 2t is the ferromagnetic film
thickness.

3.2. Non-superconducting cover (λ− = ∞)

This case is especially important, since it seems that such films may be much easier to
fabricate and to observe. However, there is no qualitative difference from the case discussed
above. TheL∞ value certainly remains the same, andλ+ → 0 changes the effective
demagnetization term by a factor of 3/2. Hence f (ν, 0, ∞) ≈ 1 − 3/4ν

Ln(λ+ = 0) = L∞/
√

3/2.
(27)

4. Critical thickness: an isolated Bloch domain wall

As was shown before, in ultra-thin films deposited on a superconductor the equilibrium
domain size quickly increases as the thickness decreases; this is related to the local character
of the demagnetization forces. It was also supposed that there are critical valuestc(λ),
corresponding to domain structure suppression. The energy of the domain wall is always
positive (as compared with the uniform state), and for domain structure creation it is
necessary to compensate it with a negative demagnetization energy contribution (in our case



1026 A Stankiewicz et al

the uniform part of the demagnetization energy has re-normalized the anisotropy constant).
When the domain size tends to infinity such energy energy balance can be performed for
each wall separately, and the critical thickness for domain suppression can be assigned to a
tc value, at which this balance becomes less profitable than in the monodomain state. We
shall consider a one-dimensional Bloch wall centred on the planex = 0. We assume the
magnetization distribution in the standard form:

M = M0(0, sinθ, cosθ) sinθ = 1/ cosh(x/1) (28)

where1 is the wall width. Its value is a function of exchange and anisotropy constants, as
well as thickness for ultra-thin films. Then the only non-vanishing Fourier components can
be written as 

M
y

kx
= m

y

kM0 = π1

cosh(πk1/2)
M0

Mz
kx

= mz
kM0 = − π i1

sinh(πk1/2)
M0.

(29)

In order to investigate the balance of energy, we can consider linear energy densityε

(per unit length of the wall), normalized byM2
0. We will take into account the following

energy contributions.

(i) Exchange energy.

εex
k = 1

2ak2(|my

k |2 + |mz
k|2) = 2π2αk212 cosh(πk1)/ sinh2(πk1) (30)

whereα − 2A/M2
0.

(ii) Anisotropy energy (including the uniform part of demagnetization).

εan
k = 1

2(β − 4π)|my

k |2 = π2β̃12/2 coshh2(πk1/2) (31)

whereβ = 2Ku/M
2
0 and β̃ = β − 4π .

Exchange and anisotropy contributions are positive and can be written together as

ε> = I

π

∫ ∞

0
(εex

k + εan
k ) dk = α

1
+ β̃1. (32)

(iii) Non-uniform demagnetizing energy.This contribution is negative and has the form

ε< = −2
∫ ∞

0
|mz

k|2f (kt, 3+, 3−) dk = −8tρ2J (ρ, 3+, 3−) (33)

whereρ = π1/2t andJ (ρ, 3+, 3−) = ∫ ∞
0 dνf (ν, 3+, 3−)/ sinh2(ρν)].

The total energy of the isolated Bloch wall is given by

ε = ε> + ε< = α/1 + β̃1 − 8tρ2J (ρ, 3+, 3−). (34)

1 can be evaluated by minimization of the energyε. Simultaneously, for the critical
thickness this energy has to be equal to the energy of the uniform phase (i.e. zero). Hence
we obtain the set of two non-linear equations defining critical values of the parameterst

andρ.  β̃ = 6πρJ (ρ, 3+, 3−) + 2πρ2J ′
ρ(ρ, 3+, 3−)

πα/4t2 = −4πρ3J (ρ, 3+, 3−) − 4πρ4J ′
ρ(ρ, 3+, 3−).

(35)

In general the above equations can be solved numerically forβ̃ > 0. The dependences
2tc(Q > 1) are presented in figure 3, whereQ = β/(4π) is the quality factor of the
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Figure 3. Critical thicknesstc(Q) dependences for (A) an ideal superconductor and (B) finite
penetration depth, calculated for different substrate–capping combinations.Q is the quality
factor of the ferromagnetic material.

ferromagnet. Figure 3(B) corresponds to a realistic value ofλ+ = 10
√

α. It can be seen
for large Q-values the critical thickness is of order

√
α. As an example, for hcp cobalt√

α ≈ 110 Å, and we havetc(λ+ = 1100 Å) ∝ 110 Å. The tc-values for the symmetric
case and non-superconducting capping are of the same order.

Figure 4 shows 2tc(λ+) curves for different anisotropy values. After the fast drop in the
region of small penetration depth, 2tc decreases very slowly (logarithmically) with increasing
λ+. Let us remark that the critical thickness remains significant (tens ofångstr̈oms)
independently of the capping type, even for largeλ+ and small anisotropy.

For vacuum surrounding we obtain limλx→∞ tc = 0, i.e. the monodomain state is unstable
at any finite thickness.

Let us consider the case of an ideal superconductor (λ+ = 0).

4.1. The symmetric configuration (λ− = λ+)

4.1.1. Large anisotropy (ρ � 1).

J (ρ, 0, 0) ≈ 1

2ρ2

∫ ∞

0

dν tanh2 ν

ν2
≈ 0.8525

ρ2
(36)

1c ≈
√

α/β̃ 2tc ≈ 0.5865
√

αβ̃. (37)
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Figure 4. Critical thicknesstc(λ+) dependences for (A) the symmetric caseλ− = λ+ and
(B) vacuum cappingλ− = ∞, calculated for different quality factorsQ.

4.1.2. Small anisotropy (ρ � 1).

J (ρ, 0, 0) ≈
∫ ∞

0

dν

sinh2(ρν)

(
1

3
ν2 − 2

15
ν4

)
≈ π2

18ρ3
− π4

225ρ5
(38)

1c ≈ (9α2/25πβ̃)1/4 2tc ≈ 3
√

α/2π. (39)

4.2. Non-superconducting cover (λ− = ∞)

4.2.1. Large anisotropy (ρ � 1).

J (ρ, 0, ∞) ≈ (2 ln 2)/ρ2 ≈ 1.3863/ρ2 (40)

1c ≈
√

α/β̃ 2tc ≈
√

αβ̃/4 ln 2 ≈ 0.3607
√

αβ̃. (41)

4.2.2. Small anisotropy (ρ � 1).

J (ρ, 0, ∞) ≈
∫ ∞

0

dν

sinh2(ρν)

(
4

3
ν2 − 2ν3

)
≈ 2π2

9ρ3
− 3ζ(3)

ρ4
(42)

1c ≈ (3/2π)(6πζ(3)/β̃)1/3
√

α/2π 2tc ≈ 3
2

√
α/2π. (43)

5. Critical thickness: sinusoidal domain structure

As shown in [7], for 0< β < 4π (which corresponds to the effective in-plane anisotropy)
the amplitude of domain structure is lower thanM0 and tends to zero (|m2

k| � 1) when
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t → tc + 0. At the same time, the domain size tends to the finite valueLc, and1/Lc → 1.
This means that the critical domain structure has sinusoidal shape and its energy can be
expressed as

ε = εk = [ 1
2αk2 − 1

2β̃ − 2πf (kt, 3+, 3−)]|mz
k|2 + O(|mz

k|4). (44)

At the point of phase transition the expression in the square brackets is equal to zero,
and the energy should achieve a minimum as a function ofk. These conditions give the
following equation set, definingtc andkc: Q = 1 + 1

2νf ′
ν(ν, 3+, 3−) − f (ν, 3+, 3−)

α/4πt2 − f ′
ν(ν, 3+, 3−)/2ν

(45)

whereν = kt . The numerical solution of (45) is shown in figure 4 as curves corresponding
to Q < 1.

5.1. The symmetric configuration (λ− = λ+)

In this case ofQ → 1 from below we obtainLc → ∞ and

2tc → − 9
2λ+ +

√
81
4 λ2+ + 3α/π. (46)

5.2. Non-superconducting cover (λ− = ∞)

For Q → 1 from below we have againLc → ∞ and

2tc → − 1
2

(
− 9

2λ+ +
√

81
4 λ2+ + 3α/π

)
. (47)

5.3. Vacuum surroundings (λ± = ∞)

For 1− Q � 1 we obtain 2tc ≈ 2
√

(α/π)(1 − Q)

Lc ≈ 1
2

√
πα/(1 − Q).

(48)

For Q � 1 the behaviour is independent ofλ±: 2tc ≈ 3
4

√
πα/Q3

Lc ≈ 1
2

√
3πα/Q.

(49)

For any finiteλ± the dependencetc(Q) has a discontinuity atQ = 1, which is related
to the different character of the phase transitions.

6. Conclusion

We have shown that superconducting surroundings significantly affect parameters of domain
structures in ferromagnetic films, both in ultra-thin and thick limits. This leads to the full
suppression of domain structure when the film thickness is lower than a critical value
tc, which is a function of London penetration depth and parameters of the ferromagnet.
However, for practically expected values of these factors, it remains not small (tens of
ångstr̈oms), even for non-superconducting capping.
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In the above analysis, we assumed that equilibrium domain structure is defined
exclusively by phenomenological interactions typical for ideal materials, neglecting any
influence of defects. In fact, very often ultra-thin films contain numerous defects, which
can strongly affect the domain structure creation. This effect may completely suppress the
magnetostatic interactions between ferromagnet and superconductor.

On the other hand, there is an open problem of the superconductor influence on magnetic
properties of ultra-thin films, which was neglected in our consideration. There may be an
effect of Cooper pair tunnelling into the ferromagnetic metallic film that can significantly
change both exchange and anisotropy constants. This can lead to creation of different kinds
of inhomogeneous magnetic moment distribution [8]. We have also neglected the possible
suppression of the superconducting order parameter near the ferromagnet–superconductor
interface, due to the strong exchange field of the ferromagnetic film [8, 9]. In fact, both
mechanisms mentioned may create a ‘dead’ layer between ferromagnet and superconductor,
which is neither ferromagnet nor superconducting.

Finally, we assumed that the anisotropy constant and the film thickness are independent
parameters. It is known that in the ultra-thin limit they are closely connected, which should
be taken into account in calculations made for real films.
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